Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Chest Surg ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584377

RESUMO

Background: In this study, we examined the impact of a patient blood management (PBM) program on red blood cell (RBC) transfusion practices in cardiothoracic surgery. Methods: The PBM program had 3 components: monitoring transfusions through an order communication system checklist, educating the medical team about PBM, and providing feedback to ordering physicians on the appropriateness of transfusion. The retrospective analysis examined changes in the hemoglobin levels triggering transfusion and the proportions of appropriate RBC transfusions before, during, and after PBM implementation. Further analysis was focused on patients undergoing cardiac surgery, with outcomes including 30-day mortality, durations of intensive care unit and hospital stays, and rates of pneumonia, sepsis, and wound complications. Results: The study included 2,802 patients admitted for cardiothoracic surgery. After the implementation of PBM, a significant decrease was observed in the hemoglobin threshold for RBC transfusion. This threshold dropped from 8.7 g/dL before PBM to 8.3 g/dL during the PBM education phase and 8.0 g/dL during the PBM feedback period. Additionally, the proportion of appropriate RBC transfusions increased markedly, from 23.9% before PBM to 34.9% and 58.2% during the education and feedback phases, respectively. Among the 381 patients who underwent cardiac surgery, a significant reduction was noted in the length of hospitalization over time (p<0.001). However, other clinical outcomes displayed no significant differences. Conclusion: PBM implementation effectively reduced the hemoglobin threshold for RBC transfusion and increased the rate of appropriate transfusion in cardiothoracic surgery. Although transfusion practices improved, clinical outcomes were comparable to those observed before PBM implementation.

2.
Cancer Commun (Lond) ; 44(1): 47-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133457

RESUMO

BACKGROUND: Transmembrane 4 L six family member 5 (TM4SF5) translocates subcellularly and functions metabolically, although it is unclear how intracellular TM4SF5 translocation is linked to metabolic contexts. It is thus of interests to understand how the traffic dynamics of TM4SF5 to subcellular endosomal membranes are correlated to regulatory roles of metabolisms. METHODS: Here, we explored the metabolic significance of TM4SF5 localization at mitochondria-lysosome contact sites (MLCSs), using in vitro cells and in vivo animal systems, via approaches by immunofluorescence, proximity labelling based proteomics analysis, organelle reconstitution etc. RESULTS: Upon extracellular glucose repletion following depletion, TM4SF5 became enriched at MLCSs via an interaction between mitochondrial FK506-binding protein 8 (FKBP8) and lysosomal TM4SF5. Proximity labeling showed molecular clustering of phospho-dynamic-related protein I (DRP1) and certain mitophagy receptors at TM4SF5-enriched MLCSs, leading to mitochondrial fission and autophagy. TM4SF5 bound NPC intracellular cholesterol transporter 1 (NPC1) and free cholesterol, and mediated export of lysosomal cholesterol to mitochondria, leading to impaired oxidative phosphorylation but intact tricarboxylic acid (TCA) cycle and ß-oxidation. In mouse models, hepatocyte Tm4sf5 promoted mitophagy and cholesterol transport to mitochondria, both with positive relations to liver malignancy. CONCLUSIONS: Our findings suggested that TM4SF5-enriched MLCSs regulate glucose catabolism by facilitating cholesterol export for mitochondrial reprogramming, presumably while hepatocellular carcinogenesis, recapitulating aspects for hepatocellular carcinoma metabolism with mitochondrial reprogramming to support biomolecule synthesis in addition to glycolytic energetics.


Assuntos
Proteínas de Membrana , Mitocôndrias , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Movimento Celular/fisiologia , Mitocôndrias/metabolismo , Lisossomos , Colesterol/metabolismo
3.
J Hum Nutr Diet ; 36(4): 1589-1599, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36727618

RESUMO

BACKGROUND: Food antioxidants have received prompt attention for controlling oxidative stress encountered in daily life. This study aimed to examine the protective effects of Aronia berry extract (ABE) supplementation on acute aerobic exercise (AAE)-induced oxidative stress in healthy subjects. METHODS: We assessed a battery of antioxidant defence and oxidative stress parameters at pre-exercise, immediately post-exercise and 30 min post-exercise in healthy middle-aged adults with habitually low intakes of fruit and vegetables in an 8-week, double-blind, randomised, controlled clinical trial with two arms (n = 70). The AAE challenge model, characterised as a treadmill exercise for 30 min at 60% VO2 maximum, was applied to load oxidative stress at the end of the study. Pearson's correlation analysis assessed the association between the changes in antioxidant defence capacities and oxidative stress levels. RESULTS: The time-course-dependent oxidative stress was well observed in the placebo group regarding the glutathione peroxidase (GPx) activity and the reduced glutathione (GSH) availability for antioxidant defence and erythrocyte malondialdehyde, interleukin-6 and lactate levels for oxidative damage. Meanwhile, the ABE supplementation effectively strengthened the glutathione defence system by increasing GSH availability and GPx activity immediately post-exercise and 30 min post-exercise. In addition, the scatter plot and linear regression analysis revealed strong negative correlations of GSH availability with oxidised low-density lipoprotein and plasma malonaldehyde levels. CONCLUSION: These findings suggest that daily supplementation of 300 mg ABE might help boost GSH levels and an adaptive antioxidant enzyme defence system of erythrocytes in healthy adults with habitually low fruit and vegetable intakes.


Assuntos
Antioxidantes , Photinia , Pessoa de Meia-Idade , Adulto , Humanos , Antioxidantes/metabolismo , Photinia/metabolismo , Frutas , Glutationa , Estresse Oxidativo , Exercício Físico , Suplementos Nutricionais , Extratos Vegetais/farmacologia , Método Duplo-Cego
4.
Anesth Analg ; 137(1): 153-161, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730895

RESUMO

BACKGROUND: We examined the relationship between blood transfusion and long-term adverse events to evaluate the clinical impact of red blood cell (RBC) transfusion on patients undergoing cardiac valve surgery. METHODS: From the National Health Insurance Service database, individuals undergoing heart valve surgery were verified, including aortic valve (AV), mitral valve (MV), tricuspid valve (TV), and complex valves (more than 2 valve surgeries). The interested outcomes were incidence of death, ischemic stroke, hemorrhagic stroke, and admission for myocardial infarction during follow-up. Associations between perioperative RBC transfusion and long-term cardiovascular events were analyzed with Cox-proportional hazard model. RESULTS: Perioperative RBC transfusion (±2 days from the day of surgery) was categorized into 0, 1, 2, and >3 units based on the number of packs transfused. From 2003 to 2019, the data of 58,299 individuals were retrieved (51.6% were male and 58% were aged above 60 years). The median follow-up duration was 5.53 years. Of the total cohort, 86.5% received at least 1 transfusion. In multivariable analysis, adverse cardiovascular event risk proportionally increased with transfusion in a dose-dependent manner. The adjusted hazard ratios and 95% confidence intervals of outcomes after the transfusion of 1, 2, and ≥3 units compared to those with no transfusion were as follows: death, 1.53 (1.41-1.66), 1.97 (1.81-2.14), and 3.03 (2.79-3.29); ischemic stroke, 1.27 (1.16-1.39), 1.31 (1.19-1.44), and 1.51 (1.38-1.66); hemorrhagic stroke, 1.38 (1.16-1.66), 1.71 (1.43-2.05), and 2.31 (1.94-2.76); and myocardial infarction 1.35 (1.13-1.62), 1.60 (1.33-1.91), and 1.99 (1.66-2.38), respectively (all P < .01). CONCLUSIONS: In the analysis of the national cohort, perioperative RBC transfusion during heart valve surgery was associated with adverse cardiovascular outcomes correlated with the volume of RBC transfusion.


Assuntos
Acidente Vascular Cerebral Hemorrágico , AVC Isquêmico , Infarto do Miocárdio , Humanos , Masculino , Idoso , Feminino , Transfusão de Eritrócitos/efeitos adversos , Acidente Vascular Cerebral Hemorrágico/complicações , Estudos Retrospectivos , Infarto do Miocárdio/etiologia , AVC Isquêmico/etiologia , Resultado do Tratamento
5.
Sci Rep ; 12(1): 18466, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323712

RESUMO

The detection of Epstein-Barr virus (EBV) in gastric cancer patients is crucial for clinical decision making, as it is related with specific treatment responses and prognoses. Despite its importance, the limited medical resources preclude universal EBV testing. Herein, we propose a deep learning-based EBV prediction method from H&E-stained whole-slide images (WSI). Our model was developed using 319 H&E stained WSI (26 EBV positive; TCGA dataset) from the Cancer Genome Atlas, and 108 WSI (8 EBV positive; ISH dataset) from an independent institution. Our deep learning model, EBVNet consists of two sequential components: a tumor classifier and an EBV classifier. We visualized the learned representation by the classifiers using UMAP. We externally validated the model using 60 additional WSI (7 being EBV positive; HGH dataset). We compared the model's performance with those of four pathologists. EBVNet achieved an AUPRC of 0.65, whereas the four pathologists yielded a mean AUPRC of 0.41. Moreover, EBVNet achieved an negative predictive value, sensitivity, specificity, precision, and F1-score of 0.98, 0.86, 0.92, 0.60, and 0.71, respectively. Our proposed model is expected to contribute to prescreen patients for confirmatory testing, potentially to save test-related cost and labor.


Assuntos
Aprendizado Profundo , Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Neoplasias Gástricas/patologia , Infecções por Vírus Epstein-Barr/genética , Prognóstico
6.
BMB Rep ; 55(12): 609-614, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36104259

RESUMO

Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of ß-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or ß-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of ß-catenin via reduced glycogen synthase kinase 3ß (GSK3ß) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3ß phosphorylation (opposite to that seen in the colon), ß-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver. [BMB Reports 2022; 55(12): 609-614].


Assuntos
Hipertensão Portal , Proteínas de Membrana , Animais , Camundongos , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , beta Catenina/metabolismo , Fibrose , Glicogênio Sintase Quinase 3 beta , Proteínas de Membrana/genética , Camundongos Transgênicos
7.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955521

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is found in up to 30% of the world's population and can lead to hepatocellular carcinoma (HCC), which has a poor 5-year relative survival rate of less than 40%. Clinical therapeutic strategies are not very successful. The co-occurrence of metabolic disorders and inflammatory environments during the development of steatohepatitis thus needs to be more specifically diagnosed and treated to prevent fatal HCC development. To improve diagnostic and therapeutic strategies, the identification of molecules and/or pathways responsible for the initiation and progression of chronic liver disease has been explored in many studies, but further study is still required. Transmembrane 4 L six family member 5 (TM4SF5) has been observed to play roles in the regulation of metabolic functions and activities in hepatocytes using in vitro cell and in vivo animal models without or with TM4SF5 expression in addition to clinical liver tissue samples. TM4SF5 is present on the membranes of different organelles or vesicles and cooperates with transporters for fatty acids, amino acids, and monocarbohydrates, thus regulating nutrient uptake into hepatocytes and metabolism and leading to phenotypes of chronic liver diseases. In addition, TM4SF5 can remodel the immune environment by interacting with immune cells during TM4SF5-mediated chronic liver diseases. Because TM4SF5 may act as an NAFLD biomarker, this review summarizes crosstalk between TM4SF5 and nutrient transporters in hepatocytes, which is related to chronic liver diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doenças Metabólicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Cell Rep ; 37(7): 110018, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34788612

RESUMO

Chronic injury to hepatocytes results in inflammation, steatohepatitis, fibrosis, and nonalcoholic fatty liver disease (NAFLD). The tetraspanin TM4SF5 is implicated in fibrosis and cancer. We investigate the role of TM4SF5 in communication between hepatocytes and macrophages (MΦs) and its possible influence on the inflammatory microenvironment that may lead to NAFLD. TM4SF5 induction in differentiated MΦs promotes glucose uptake, glycolysis, and glucose sensitivity, leading to M1-type MΦ activation. Activated M1-type MΦs secrete pro-inflammatory interleukin-6 (IL-6), which induces the secretion of CCL20 and CXCL10 from TM4SF5-positive hepatocytes. Although TM4SF5-dependent secretion of these chemokines enhances glycolysis in M0 MΦs, further chronic exposure reprograms MΦs for an increase in the proportion of M2-type MΦs in the population, which may support diet- and chemical-induced NAFLD progression. We suggest that TM4SF5 expression in MΦs and hepatocytes is critically involved in modulating the inflammatory environment during NAFLD progression.


Assuntos
Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Hepatócitos/patologia , Inflamação/metabolismo , Fígado/imunologia , Fígado/patologia , Macrófagos/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
9.
Theranostics ; 11(16): 8092-8111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335982

RESUMO

Active c-Src non-receptor tyrosine kinase localizes to the plasma membrane via N-terminal lipid modification. Membranous c-Src causes cancer initiation and progression. Even though transmembrane 4 L six family member 5 (TM4SF5), a tetraspan(in), can be involved in this mechanism, the molecular and structural influence of TM4SF5 on c-Src remains unknown. Methods: Here, we investigated molecular and structural details by which TM4SF5 regulated c-Src devoid of its N-terminus and how cell-penetrating peptides were able to interrupt c-Src activation via interference of c-Src-TM4SF5 interaction in hepatocellular carcinoma models. Results: The TM4SF5 C-terminus efficiently bound the c-Src SH1 kinase domain, efficiently to the inactively-closed form. The complex involved protein tyrosine phosphatase 1B able to dephosphorylate Tyr530. The c-Src SH1 domain alone, even in a closed form, bound TM4SF5 to cause c-Src Tyr419 and FAK Y861 phosphorylation. Homology modeling and molecular dynamics simulation studies predicted the directly interfacing residues, which were further validated by mutational studies. Cell penetration of TM4SF5 C-terminal peptides blocked the interaction of TM4SF5 with c-Src and prevented c-Src-dependent tumor initiation and progression in vivo. Conclusions: Collectively, these data demonstrate that binding of the TM4SF5 C-terminus to the kinase domain of inactive c-Src leads to its activation. Because this binding can be abolished by cell-penetrating peptides containing the TM4SF5 C-terminus, targeting this direct interaction may be an effective strategy for developing therapeutics that block the development and progression of hepatocellular carcinoma.


Assuntos
Proteína Tirosina Quinase CSK/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas de Membrana/metabolismo , Proteína Tirosina Quinase CSK/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Genes src/genética , Genes src/fisiologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Peptídeos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Tetraspaninas/genética , Tetraspaninas/metabolismo
10.
J Clin Med ; 10(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920804

RESUMO

Image-based quantitative methods for liver heterogeneity (LHet) and nodularity (LNod) provide helpful information for evaluating liver fibrosis; however, their combinations are not fully understood in liver diseases. We developed an integrated software for assessing LHet and LNod and compared LHet and LNod according to fibrosis stages in chronic liver disease (CLD). Overall, 111 CLD patients and 16 subjects with suspected liver disease who underwent liver biopsy were enrolled. The procedures for quantifying LHet and LNod were bias correction, contour detection, liver segmentation, and LHet and LNod measurements. LHet and LNod scores among fibrosis stages (F0-F3) were compared using ANOVA with Tukey's test. Diagnostic accuracy was determined by calculating the area under the receiver operating characteristics (AUROC) curve. The mean LHet scores of F0, F1, F2, and F3 were 3.49 ± 0.34, 5.52 ± 0.88, 6.80 ± 0.97, and 7.56 ± 1.79, respectively (p < 0.001). The mean LNod scores of F0, F1, F2, and F3 were 0.84 ± 0.06, 0.91 ± 0.04, 1.09 ± 0.08, and 1.15 ± 0.14, respectively (p < 0.001). The combined LHet × LNod scores of F0, F1, F2, and F3 were 2.96 ± 0.46, 5.01 ± 0.91, 7.30 ± 0.89, and 8.48 ± 1.34, respectively (p < 0.001). The AUROCs of LHet, LNod, and LHet × LNod for differentiating F1 vs. F2 and F2 vs. F3 were 0.845, 0.958, and 0.954; and 0.619, 0.689, and 0.761, respectively. The combination of LHet and LNod scores derived from routine MR images allows better differential diagnosis of fibrosis subgroups in CLD.

11.
J Chest Surg ; 54(1): 36-44, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767009

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) has become increasingly accepted as a life-saving procedure for patients with severe acute respiratory distress syndrome (ARDS). This study investigated the relationship between cumulative fluid balance (CFB) and outcomes in adult ARDS patients treated with ECMO. METHODS: We retrospectively analyzed the data of adult ARDS patients who received ECMO between December 2009 and December 2019 at Korea University Anam Hospital. CFB was calculated during the first 7 days after ECMO initiation. The primary endpoint was 28-day mortality. RESULTS: The 74 patients were divided into survivor (n=33) and non-survivor (n=41) groups based on 28-day survival. Non-survivors showed a significantly higher CFB at 1-7 days (p<0.05). Cox multivariable proportional hazard regression revealed a relationship between CFB on day 3 and 28-day mortality (hazard ratio, 3.366; 95% confidence interval, 1.528-7.417; p=0.003). CONCLUSION: In adult ARDS patients treated with ECMO, a higher positive CFB on day 3 was associated with increased 28-day mortality. Based on our findings, we suggest a restrictive fluid strategy in ARDS patients treated with ECMO. CFB may be a useful predictor of survival in ARDS patients treated with ECMO.

12.
FASEB J ; 35(3): e21369, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33554392

RESUMO

Transmembrane 4 L six family member 5 (TM4SF5) translocates intracellularly and promotes cell migration, but how subcellular TM4SF5 traffic is regulated to guide cellular migration is unknown. We investigated the influences of the extracellular environment and intracellular signaling on the TM4SF5 traffic with regard to migration directionality. Cell adhesion to fibronectin (FN) but not poly-l-lysine enhanced the traffic velocity and straightness of the TM4SF5WT (but not palmitoylation-deficient mutant TM4SF5Pal- ) toward the leading edges, depending on tubulin acetylation. Acetylated-microtubules in SLAC2B-positive cells reached mostly the juxtanuclear regions, but reached-out toward the leading edges upon SLAC2B suppression. TM4SF5 expression caused SLAC2B not to be localized at the leading edges. TM4SF5 colocalization with HDAC6 depended on paxillin expression. The trimeric complex consisting of TM4SF5, HDAC6, and SLAC2B might, thus, be enriched at the perinuclear cytosols toward the leading edges. More TM4SF5WT translocation to the leading edges was possible when acetylated-microtubules reached the frontal edges following HDAC6 inhibition by paxillin presumably at new cell-FN adhesions, leading to persistent cell migration. Collectively, this study revealed that cell-FN adhesion and microtubule acetylation could control intracellular traffic of TM4SF5 vesicles to the leading edges via coordinated actions of paxillin, SLAC2B, and HDAC6, leading to TM4SF5-dependent cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Membrana Celular/metabolismo , Matriz Extracelular/fisiologia , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Acetilação , Adesão Celular , Movimento Celular , Fibronectinas/fisiologia , Células Hep G2 , Desacetilase 6 de Histona/fisiologia , Humanos , Paxilina/fisiologia , Transporte Proteico
13.
J Public Health Policy ; 42(1): 15-26, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33087849

RESUMO

In a recent report, the British Broadcasting Company (BBC) introduced South Korea's measures to manage COVID-19 as role model for the world. Screening centers serve as frontiers for preventing community transmission of infectious diseases. COVID-19 screening centers in Korea operate 24 h a day, always open for individuals with suspected COVID-19 symptoms. South Korea concentrated COVID-19 screening centers around cities with high population density. Advanced screening centers (models C, D, and E) proved more effective and efficient in the prevention of COVID-19 than the traditional screening centers (models A and B). Particularly, screening centers at Incheon Airport in South Korea prevent transmission through imported cases effectively. It will be important elsewhere, as in South Korea, to establish an infectious disease delivery system that can lead to 'Test-Treat-Track' using an adequate model of screening centers.


Assuntos
Teste para COVID-19/métodos , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Programas de Rastreamento/métodos , Pneumonia Viral/prevenção & controle , COVID-19/epidemiologia , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , República da Coreia/epidemiologia , SARS-CoV-2
14.
J Pathol ; 253(1): 55-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918742

RESUMO

Nonalcoholic fatty liver disease is a chronic condition involving steatosis, steatohepatitis and fibrosis, and its progression remains unclear. Although the tetraspanin transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatic fibrosis and cancer, its role in nonalcoholic steatohepatitis (NASH) progression is unknown. We investigated the contribution of TM4SF5 to liver pathology using transgenic and KO mice, diet- or drug-treated mice, in vitro primary cells, and in human tissue. TM4SF5-overexpressing mice exhibited nonalcoholic steatosis and NASH in an age-dependent manner. Initially, TM4SF5-positive hepatocytes and liver tissue exhibited lipid accumulation, decreased Sirtuin 1 (SIRT1), increased sterol regulatory-element binding proteins (SREBPs) and inactive STAT3 via suppressor of cytokine signaling (SOCS)1/3 upregulation. In older mice, TM4SF5 promoted inflammatory factor induction, SIRT1 expression and STAT3 activity, but did not change SOCS or SREBP levels, leading to active STAT3-mediated ECM production for NASH progression. A TM4SF5-associated increase in chemokines promoted SIRT1 expression and progression to NASH with fibrosis. Suppression of the chemokine CCL20 reduced immune cell infiltration and ECM production. Liver tissue from high-fat diet- or CCl4 -treated mice and human patients exhibited TM4SF5-dependent steatotic or steatohepatitic livers with links between TM4SF5-mediated SIRT1 modulation and SREBP or SOCS/STAT3 signaling axes. TM4SF5-mediated STAT3 activation in fibrotic NASH livers increased collagen I and laminin γ2. Both collagen I α1 and laminin γ2 suppression resulted in reduced SIRT1 and active STAT3, but no change in SREBP1 or SOCS, and abolished CCl4 -mediated mouse liver damage. TM4SF5-mediated signaling pathways that involve SIRT1, SREBPs and SOCS/STAT3 promoted progression to NASH. Therefore, TM4SF5 and its downstream effectors may be promising therapeutic targets to treat nonalcoholic fatty liver disease. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Matriz Extracelular/enzimologia , Metabolismo dos Lipídeos , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Sirtuína 1/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Progressão da Doença , Matriz Extracelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais
15.
AJR Am J Roentgenol ; 215(3): 624-630, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32755157

RESUMO

OBJECTIVE. The purposes of this study were to evaluate the accuracy of a semiautomatic method of measuring liver surface nodularity (LSN) on contrast-enhanced MR images and to compare the LSN score with pathologic fibrosis stage. MATERIALS AND METHODS. This retrospective study included patients who had undergone gadoxetate disodium-enhanced liver MRI 6 months before or after histopathologic investigation including percutaneous parenchymal biopsy and surgical biopsy for staging of chronic liver disease between January 2010 and December 2018. Semiautomated LSN quantification software was developed to measure LSN at MRI. Aspartate aminotransferase to platelet ratio index and fibrosis-4 index were derived from serum laboratory test results. The reference standard for staging of liver fibrosis was Metavir score. The accuracy of LSN score for staging of liver fibrosis was evaluated with AUC, and the optimal cutoff value was calculated by Youden index. Spearman correlation coefficient was used for correlation analysis. RESULTS. The study included 132 patients (93 men, 39 women). LSN score was evaluated without technical failure. There was high correlation between LSN score and Metavir score (Spearman ρ = 0.713, p < 0.001). The AUCs of LSN score for distinguishing Metavir score were 0.93 for F0-F1 versus F2-F4 (95% CI, 0.88-0.97; p < 0.001), 0.98 for F0-F2 vs F3-F4 (95% CI, 0.95-1.00; p < 0.001), and 0.83 for F0-F3 versus F4 (95% CI, 0.76-0.90; p < 0.001). The optimal cutoff value for differentiating F0-F2 from F3-F4 was 0.850 with 100% sensitivity and 85.4% specificity. CONCLUSION. LSN score calculated semiautomatically from MR images of the liver has high accuracy and correlates directly with the pathologic fibrosis stage.


Assuntos
Cirrose Hepática/patologia , Imageamento por Ressonância Magnética/métodos , Biópsia , Meios de Contraste , Feminino , Gadolínio DTPA , Humanos , Interpretação de Imagem Assistida por Computador , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade
16.
Exp Mol Med ; 52(1): 7-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31956272

RESUMO

Transmembrane 4 L6 family member 5 (TM4SF5) is a tetraspanin that has four transmembrane domains and can be N-glycosylated and palmitoylated. These posttranslational modifications of TM4SF5 enable homophilic or heterophilic binding to diverse membrane proteins and receptors, including growth factor receptors, integrins, and tetraspanins. As a member of the tetraspanin family, TM4SF5 promotes protein-protein complexes for the spatiotemporal regulation of the expression, stability, binding, and signaling activity of its binding partners. Chronic diseases such as liver diseases involve bidirectional communication between extracellular and intracellular spaces, resulting in immune-related metabolic effects during the development of pathological phenotypes. It has recently been shown that, during the development of fibrosis and cancer, TM4SF5 forms protein-protein complexes with amino acid transporters, which can lead to the regulation of cystine uptake from the extracellular space to the cytosol and arginine export from the lysosomal lumen to the cytosol. Furthermore, using proteomic analyses, we found that diverse amino acid transporters were precipitated with TM4SF5, although these binding partners need to be confirmed by other approaches and in functionally relevant studies. This review discusses the scope of the pathological relevance of TM4SF5 and its binding to certain amino acid transporters.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Membrana/metabolismo , Ligação Proteica/fisiologia , Tetraspaninas/metabolismo , Animais , Humanos
17.
Sci Rep ; 9(1): 15002, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628409

RESUMO

Liver biopsy is the reference standard test to differentiate between non-alcoholic steatohepatitis (NASH) and simple steatosis (SS) in non-alcoholic fatty liver disease (NAFLD), but noninvasive diagnostics are warranted. The diagnostic accuracy in NASH using MR imaging modality have not yet been clearly identified. This study was assessed the accuracy of magnetic resonance imaging (MRI) method for diagnosing NASH. Data were extracted from research articles obtained after a literature search from multiple electronic databases. Random-effects meta-analyses were performed to obtain overall effect size of the area under the receiver operating characteristic(ROC) curve, sensitivity, specificity, likelihood ratios(LR), diagnostic odds ratio(DOR) of MRI method in detecting histopathologically-proven SS(or non-NASH) and NASH. Seven studies were analyzed 485 patients, which included 207 SS and 278 NASH. The pooled sensitivity was 87.4% (95% CI, 76.4-95.3) and specificity was 74.3% (95% CI, 62.4-84.6). Pooled positive LR was 2.59 (95% CI, 1.96-3.42) and negative LR was 0.17 (95% CI, 0.07-0.38). DOR was 21.57 (95% CI, 7.27-63.99). The area under the curve of summary ROC was 0.89. Our meta-analysis shows that the MRI-based diagnostic methods are valuable additions in detecting NASH.


Assuntos
Confiabilidade dos Dados , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Curva ROC , Sensibilidade e Especificidade
18.
Cell Death Dis ; 10(9): 645, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31501417

RESUMO

Reactive oxygen species (ROS) regulate cell fate, although signaling molecules that regulate ROS hormesis remain unclear. Here we show that transmembrane 4 L six family member 5 (TM4SF5) in lung epithelial cells induced the alternatively spliced CD44v8-10 variant via an inverse ZEB2/epithelial splicing regulatory proteins (ESRPs) linkage. TM4SF5 formed complexes with the cystine/glutamate antiporter system via TM4SF5- and CD44v8-10-dependent CD98hc plasma-membrane enrichment. Dynamic TM4SF5 binding to CD98hc required CD44v8-10 under ROS-generating inflammatory conditions. TM4SF5 and CD44v8-10 upregulated cystine/glutamate antiporter activity and intracellular glutathione levels, leading to ROS modulation for cell survival. Tm4sf5-null mice exhibited attenuated bleomycin-induced pulmonary fibrosis with lower CD44v8-10 and ESRPs levels than wild-type mice. Primary mouse alveolar epithelial cells (AECs) revealed type II AECs (AECII), but not type I, to adapt the TM4SF5-mediated characteristics, suggesting TM4SF5-mediated AECII survival following AECI injury during idiopathic pulmonary fibrosis (IPF). Thus, the TM4SF5-mediated CD44v8-10 splice variant could be targeted against IPF.


Assuntos
Células Epiteliais Alveolares/metabolismo , Receptores de Hialuronatos/metabolismo , Proteínas de Membrana/metabolismo , Fibrose Pulmonar/metabolismo , Células A549 , Células Epiteliais Alveolares/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Receptores de Hialuronatos/genética , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Splicing de RNA , Espécies Reativas de Oxigênio/metabolismo
19.
Cell Metab ; 29(6): 1306-1319.e7, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30956113

RESUMO

The mechanistic target of rapamycin complex (mTORC1) is a signaling hub on the lysosome surface, responding to lysosomal amino acids. Although arginine is metabolically important, the physiological arginine sensor that activates mTOR remains unclear. Here, we show that transmembrane 4 L six family member 5 (TM4SF5) translocates from plasma membrane to lysosome upon arginine sufficiency and senses arginine, culminating in mTORC1/S6K1 activation. TM4SF5 bound active mTOR upon arginine sufficiency and constitutively bound amino acid transporter SLC38A9. TM4SF5 binding to the cytosolic arginine sensor Castor1 decreased upon arginine sufficiency, thus allowing TM4SF5-mediated sensing of metabolic amino acids. TM4SF5 directly bound free L-arginine via its extracellular loop possibly for the efflux, being supported by mutant study and homology and molecular docking modeling. Therefore, we propose that lysosomal TM4SF5 senses and enables arginine efflux for mTORC1/S6K1 activation, and arginine-auxotroph in hepatocellular carcinoma may be targeted by blocking the arginine sensing using anti-TM4SF5 reagents.


Assuntos
Arginina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/fisiologia , Animais , Arginina/química , Transporte Biológico , Células Cultivadas , Células HEK293 , Células Hep G2 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína , Transdução de Sinais/genética
20.
J Clin Invest ; 128(11): 5034-5055, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188867

RESUMO

Lysyl-tRNA synthetase (KRS) functions canonically in cytosolic translational processes. However, KRS is highly expressed in colon cancer, and localizes to distinct cellular compartments upon phosphorylations (i.e., the plasma membranes after T52 phosphorylation and the nucleus after S207 phosphorylation), leading to probably alternative noncanonical functions. It is unknown how other subcellular KRSs crosstalk with environmental cues during cancer progression. Here, we demonstrate that the KRS-dependent metastatic behavior of colon cancer spheroids within 3D gels requires communication between cellular molecules and extracellular soluble factors and neighboring cells. Membranous KRS and nuclear KRS were found to participate in invasive cell dissemination of colon cancer spheroids in 3D gels. Cancer spheroids secreted GAS6 via a KRS-dependent mechanism and caused the M2 polarization of macrophages, which activated the neighboring cells via secretion of FGF2/GROα/M-CSF to promote cancer dissemination under environmental remodeling via fibroblast-mediated laminin production. Analyses of tissues from clinical colon cancer patients and Krs-/+ animal models for cancer metastasis supported the roles of KRS, GAS6, and M2 macrophages in KRS-dependent positive feedback between tumors and environmental factors. Altogether, KRS in colon cancer cells remodels the microenvironment to promote metastasis, which can thus be therapeutically targeted at these bidirectional KRS-dependent communications of cancer spheroids with environmental cues.


Assuntos
Neoplasias do Colo/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Lisina-tRNA Ligase/biossíntese , Macrófagos/enzimologia , Proteínas de Neoplasias/biossíntese , Esferoides Celulares/enzimologia , Microambiente Tumoral , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/enzimologia , Fibroblastos/patologia , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisina-tRNA Ligase/genética , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Metástase Neoplásica , Proteínas de Neoplasias/genética , Esferoides Celulares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA